
The Inria/IRISA DiverSE Research
Group

July, 2025
GDR-IHM -- GT GSI

http://www.diverse-team.fr

THE DIVERSE GROUP

● Inria/IRISA project-team in Software Engineering
○ Head: Olivier Barais (Univ Rennes), Co-head: Benoit Combemale (Univ Rennes / Inria)
○ Strong background in Model-Driven software/systems Eng.
○ Software languages, architecture, evolution, simulation, variability and testing
○ Applied to smart, heterogeneous, and distributed CPS (e.g., IoT, Industry 4.0), scientific

computing, cloud-native applications, etc.
○ 12 Prof. and Inria/CNRS researchers, 1 Inria RSE, ~20 PhD, 2 post-doc, 4 SE

● Deductive and empirical scientific approaches

● Open-source software development

2

Research axes (2021-2025)

3

Axis 1: Software Language Engineering

DSL Executability Modular &
Distributed IDE

Design Lab
Self-Adaptable

Language
Live & Polyglot
Development

●Modularity,
composability

●MoCC, REPL
●Animation, debugging,

monitoring,
(co-)simulation

●Language protocol
●Microservice architecture
●IDE as Code
●Reconfigurable IDE

●Web-based IDE
●Usability &

interactivity
●Collaborative

platforms
●Design-Space

Exploration

●Integrate the domain
feedback loop in language
definition

●Approx. language
semantics

●Smart Language/IDE

●Immediate feedback
and direct
manipulation

●Program (state) co-
evolution

●Socio-technical
coordination

4

Engineering interactive systems
in DiverSE

Engineering interactive systems in DiverSE

6

New approaches to
build development
environments (IDE)

New foundations to build
interactive system

7
Sirius Web language workbench — Design of the concrete and

abstract language of a Class-Relationship-Attribute (CRA) language

Approaches to build IDEs

8

Several studies show that the usability is a key
point of graphical modeling workbenches [1-3]

But such usability is costly to develop…

[1] Omar Badreddin et al. 2018. A Decade of Software Design and Modeling: A Survey to Uncover Trends of the Practice
[2] John Hutchinson et al. 2014. Model-driven engineering practices in industry: Social, organizational and managerial factors that lead to
success or failure [3] Charlotte Verbruggen et al. 2023. Practitioners’ experiences with model-driven engineering: a meta-review

So, we lack of usability in modeling
workbenches

Approaches to build IDEs

9

Semantic zooming
[4]

Magic lens

Dynamic filtering
[4] Hover

[61]

Offscreen

Edge navigation
[4]

Semantic
search

Graphic search

Auto layout
[5]

Quick fix
[6]

Auto-
completion

Template

Stroke gesture

Physical
zooming

Go to

[4] Arnaud Blouin et al. 2015. Assessing the Use of Slicing-based Visualizing Techniques on the Understanding of Large Metamodels
[5] Roberto Rodriguez-Echeverria et al. 2018. Towards a Language Server Protocol Infrastructure for Graphical Modeling
[6] Alexander Egyed et al. 2008. Generating and evaluating choices for fixing in consistencies in UML design models

Interactive features: solution to the lack of
usability

Approaches to build IDEs

10

Semantic zooming
[4]

Magic lens

Dynamic filtering
[4] Hover

[61]

Offscreen

Edge navigation
[4]

Semantic
search

Graphic search

Auto layout
[5]

Quick fix
[6]

Auto-
completion

Template

Stroke gesture

Physical
zooming

Go to

[4] Arnaud Blouin et al. 2015. Assessing the Use of Slicing-based Visualizing Techniques on the Understanding of Large Metamodels
[5] Roberto Rodriguez-Echeverria et al. 2018. Towards a Language Server Protocol Infrastructure for Graphical Modeling
[6] Alexander Egyed et al. 2008. Generating and evaluating choices for fixing in consistencies in UML design models

Interactive features: solution to the lack of
usability

Approaches to build IDEs

11

Class A

attribute A1

Class B

attribute B1

Class C

attribute C1

Interactive features: solution to the lack of
usability

Example: Semantic zooming

Approaches to build IDEs

12

Class A

Class B

Class C

Interactive features: solution to the lack of
usability

Example: Semantic zooming

Approaches to build IDEs

13

Class A

Class B

Class C

Interactive features: solution to the lack of
usability

Example: Semantic zooming

Approaches to build IDEs

[4] Arnaud Blouin et al. 2015. Assessing the Use of Slicing-based Visualizing Techniques on the Understanding of Large Metamodels

Some of them are domain-specific (semantic-aware interactive features)

So… We have to define them for each DSL (costly)

14

New meta-DSL: Interactivity DSL, to
describe semantic-aware interactive feature

Aware of the other concerns of the developed
DSL

Integrated inside language workbenches

Includes an interactivity library that
depends on its technology stack and uses
its API

Modeling workbench

Model editor

depends
on

user
interactions

applies
interactive feature

Existing artifacts of
language/modeling
workbenchesInteractivity artifacts

Conforms to

Relation

Legend

produce
s

represent
s

Existing components of
language/modeling
workbenchesInteractivity components

Abstract
Syntax DSL

Concrete
Syntax DSL

depends
on

Interactivity
DSL

Abstract
Syntax

metamodel

Concrete
Syntax

metamodel

Interactivity
metamodel

Language workbench

depends
on

depends
on

Model
abstract
syntax

Model
concrete
syntax

Interactivity
library

Approaches to build IDEs

15

import abstract-syntax ‘uml-as.ecore' as umlas
import concrete-syntax ‘uml-cs.ecore' as umlcs
search: [umlas.packages.classes.name, umlas.packages.name,
‘*’]
dynamic-filter:
 name: inheritance
 focus: umlas.packages.classes
 radius: [1..*]
 filter: show-inheritance
semantic-zoom:
 [0%-75%[:
 filter: without-attributes
 [150%-200%[:
 filter: without-packages
filters:
 show-inheritance:
 show: umlas.packages.classes
 show: umlas.package.class.superclasses
 without-attributes:
 hide: umlas.packages.classes.attributes
 setstyle umlas.packages.classes.name:
 font-size 200%
 without-package:
 hide: umlas.packages

Approaches to build IDEs

16

import abstract-syntax ‘uml-as.ecore' as umlas
import concrete-syntax ‘uml-cs.ecore' as umlcs
search: [umlas.packages.classes.name, umlas.packages.name,
‘*’]
dynamic-filter:
 name: inheritance
 focus: umlas.packages.classes
 radius: [1..*]
 filter: show-inheritance
semantic-zoom:
 [0%-75%[:
 filter: without-attributes
 [150%-200%[:
 filter: without-packages
filters:
 show-inheritance:
 show: umlas.packages.classes
 show: umlas.package.class.superclasses
 without-attributes:
 hide: umlas.packages.classes.attributes
 setstyle umlas.packages.classes.name:
 font-size 200%
 without-package:
 hide: umlas.packages

Approaches to build IDEs

17

import abstract-syntax ‘uml-as.ecore' as umlas
import concrete-syntax ‘uml-cs.ecore' as umlcs
search: [umlas.packages.classes.name, umlas.packages.name,
‘*’]
dynamic-filter:
 name: inheritance
 focus: umlas.packages.classes
 radius: [1..*]
 filter: show-inheritance
semantic-zoom:
 [0%-75%[:
 filter: without-attributes
 [150%-200%[:
 filter: without-packages
filters:
 show-inheritance:
 show: umlas.packages.classes
 show: umlas.package.class.superclasses
 without-attributes:
 hide: umlas.packages.classes.attributes
 setstyle umlas.packages.classes.name:
 font-size 200%
 without-package:
 hide: umlas.packages

Approaches to build IDEs

18

import abstract-syntax ‘uml-as.ecore' as umlas
import concrete-syntax ‘uml-cs.ecore' as umlcs
search: [umlas.packages.classes.name, umlas.packages.name,
‘*’]
dynamic-filter:
 name: inheritance
 focus: umlas.packages.classes
 radius: [1..*]
 filter: show-inheritance
semantic-zoom:
 [0%-75%[:
 filter: without-attributes
 [150%-200%[:
 filter: without-packages
filters:
 show-inheritance:
 show: umlas.packages.classes
 show: umlas.package.class.superclasses
 without-attributes:
 hide: umlas.packages.classes.attributes
 setstyle umlas.packages.classes.name:
 font-size 200%
 without-package:
 hide: umlas.packages

Approaches to build IDEs

19

import abstract-syntax ‘uml-as.ecore' as umlas
import concrete-syntax ‘uml-cs.ecore' as umlcs
search: [umlas.packages.classes.name, umlas.packages.name,
‘*’]
dynamic-filter:
 name: inheritance
 focus: umlas.packages.classes
 radius: [1..*]
 filter: show-inheritance
semantic-zoom:
 [0%-75%[:
 filter: without-attributes
 [150%-200%[:
 filter: without-packages
filters:
 show-inheritance:
 show: umlas.packages.classes
 show: umlas.package.class.superclasses
 without-attributes:
 hide: umlas.packages.classes.attributes
 setstyle umlas.packages.classes.name:
 font-size 200%
 without-package:
 hide: umlas.packages

Approaches to build IDEs

Engineering interactive systems in DiverSE

20

New approaches to
build development
environments (IDE)

New foundations to build
interactive system

New foundations to build interactive system

● Validation & Verification / Security

 What types of faults affect GUI?

21

Lelli, Valéria et al. "Classifying and qualifying GUI defects. ICST 2015

New foundations to build interactive system

● Validation & Verification / Security

 What types of attacks affect GUI?

22

Cavalli and al. SoK: "Web Front-end Security", under review at S&P

Etc.

New foundations to build interactive system

● Validation & Verification / Security

 What types of defects / smells affect GUI?

23

Blouin et al. "User interface design smell: Automatic detection and refactoring of Blob listeners." IST 2018
Lelli et al. "Automatic detection of GUI design smells: The case of blob listener." EICS 2016

Blob listener (UI smell):
an event handler that manages 3
commands or more

New foundations to build interactive system
● Programming user interactions

24

Blouin and Jézéquel. "Interacto: A Modern User Interaction Processing Model." TSE 2021
Blouin. "A Type System for Flexible User Interactions Handling." EICS 2024

New foundations to build interactive system
● Programming user interactions

25

Blouin and Jézéquel. "Interacto: A Modern User Interaction Processing Model." TSE 2021
Blouin. "A Type System for Flexible User Interactions Handling." EICS 2024

New foundations to build interactive system
● Programming user interactions

26

Blouin and Jézéquel. "Interacto: A Modern User Interaction Processing Model." TSE 2021
Blouin. "A Type System for Flexible User Interactions Handling." EICS 2024

Future work
● Programming/modeling styles and interfaces

 Live programming

 Exploratoring programming

● Forges for socio-technical synchronization

● IDEs for augmented development

● Digital Twins

● UI V&V (e.g. XR) 27

Thank you!
DiverSE

https://www.diverse-team.fr

	The Inria/IRISA DiverSE Research Group
	THE DIVERSE GROUP
	Research axes (2021-2025)
	Axis 1: Software Language Engineering
	Engineering interactive systems in DiverSE
	Engineering interactive systems in DiverSE
	Approaches to build IDEs
	Approaches to build IDEs (2)
	Approaches to build IDEs (3)
	Approaches to build IDEs (4)
	Approaches to build IDEs (5)
	Approaches to build IDEs (6)
	Approaches to build IDEs (7)
	Approaches to build IDEs (8)
	Approaches to build IDEs (9)
	Approaches to build IDEs (10)
	Approaches to build IDEs (11)
	Approaches to build IDEs (12)
	Approaches to build IDEs (13)
	Engineering interactive systems in DiverSE (2)
	New foundations to build interactive system
	New foundations to build interactive system (2)
	New foundations to build interactive system (3)
	New foundations to build interactive system (4)
	New foundations to build interactive system (5)
	New foundations to build interactive system (6)
	Future work
	Thank you! DiverSE https://www.diverse-team.fr

